

Towards Holistic Scene Understanding for Autonomous Driving

Kailun Yang

Hunan University

Computer Vision for Panoramic Understanding (Lab)

Multimodal Perception and **Computational Imaging**

and World Models

Autonomous Driving Visual Assistance and Human-**Computer Interaction**

Holistic Scene Understanding

- Overcoming the limit in Field of View (FoV): Panoramic Scene Segmentation
- Overcoming the limit in annotations: Label-efficient Occupancy Prediction
- Overcoming the limit in cross-modal fusion: Arbitrary-modal Segmentation

- Panoramic Annular Lens (PAL), applied in GOAT G1
- Panoramic Annular Scene Segmentation (PASS) models
- PASS, WildPASS, WildPPS, and DensePASS benchmarks
- WildPASS: 2500 images collected from 65 cities, 6 continents [1]

[1] Yang, Kailun, Xinxin Hu, and Rainer Stiefelhagen. "Is context-aware CNN ready for the surroundings? Panoramic semantic segmentation in the wild." IEEE Transactions on Image Processing 30 (2021): 1866-1881.

- Glass-plastic hybrid minimalist aspheric panoramic lens [1]
- Minimalist and high-quality computational imaging engine [2]

[1] Gao, Shaohua, et al. "Design, analysis, and manufacturing of a glass-plastic hybrid minimalist aspheric panoramic annular lens." Optics & Laser Technology 177 (2024): 111119. [2] Jiang, Qi, et al. "Minimalist and high-quality panoramic imaging with PSF-aware transformers." *IEEE Transactions on Image Processing* (2024).

- Unsupervised Domain Adaptation (UDA)
- Outdoor and indoor UDA benchmarks, TPAMI 2024 [1]
- Distortion-aware panoramic segmentation transformers

[1] Zhang, Jiaming, et al. "Behind every domain there is a shift: Adapting distortion-aware vision transformers for panoramic segmentation." IEEE Transactions on Pattern Analysis and Machine Intelligence (2024).

- SAM-rectified prototypical adaptation, Zhang et al., TPAMI 2024
- Both semantics, distortion, and style matter in source-free UDA, panoramic prototypes, Zheng *et al.*, CVPR 2024 [1]

[1] Zheng, Xu, et al. "Semantics Distortion and Style Matter: Towards Source-free UDA for Panoramic Segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

• Occlusion-Aware Seamless Segmentation, ECCV 2024 [1]

[1] Cao, Yihong, et al. "Occlusion-Aware Seamless Segmentation." European Conference on Computer Vision (ECCV), 2024.

• Occlusion-aware Seamless Segmentation, ECCV 2024 [1]

[1] Cao, Yihong, et al. "Occlusion-Aware Seamless Segmentation." European Conference on Computer Vision (ECCV), 2024.

Yang, Kailun, et al. "Pass: Panoramic annular semantic segmentation." IEEE Transactions on Intelligent Transportation Systems 21.10 (2019): 4171-4185.
 Yang, Kailun, et al. "Capturing omni-range context for omnidirectional segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

- Weakly scribble-supervised Scribble2Scene, 99% performance
- ScribbleSC benchmark with scribble-based semantic occupancy labels and dense geometric structure [1]

[1] Wang, Song, et al. "Label-efficient Semantic Scene Completion with Scribble Annotations." IJCAI, 2024.

- Dean-Labeler: Treats the complete geometric structure as input, converts into an easier semantic segmentation problem
- Teacher-Labeler: trained in offline mode with input image and complete geometry, the same architecture as the online model

[1] Wang, Song, et al. "Label-efficient Semantic Scene Completion with Scribble Annotations." IJCAI, 2024.

Performance on Sequence 11

Performance on Sequence 15

Performance on Sequence 19

Predicted Labels

Ground Truth Labels

Dataset: KITTI360 Input: Front Camera RGB Output: Complete Voxel Grids with Semantics

Dataset: SemanticKITTI Input: Partial Voxel Output: Complete Voxel Grids with Semantics

• Offboard OccFiner: Constructs unified and multi-view consistent occupancy maps, with continuity across varying viewpoints [1]

- **Multi-to-multi local propagation network:** implicitly aligns and processes multiple local frames for correcting onboard errors
- **Region-centric global propagation:** focuses on refining labels using explicit multi-view geometry and integrating sensor bias

VoxFormer VoxFormer + OccFiner (Ours)

- **Multi-to-multi local propagation network:** implicitly aligns and processes multiple local frames for correcting onboard errors
- **Region-centric global propagation:** focuses on refining labels using explicit multi-view geometry and integrating sensor bias

Semantic Scene Completion

VoxFormer

OccFiner + VoxFormer (Ours)

RGB image semantic segmentation

- Great progress on accuracy
- Difficulties when objects have similar colors/textures
- E.g., in low-illumination or high-dynamic conditions

RGB-X semantic segmentation

- Using complementary features from the X-modality
- Depth: Geometric information
- Thermal: Infrared information
- Polarization: Beneficial for specular scenes
- Event: Beneficial for dynamic scenes
- LiDAR: Spatial information

GB + Depth RGB + Thermal RGB + Polarization RGB + Event RGB + LiDAR

• ACNet: Attention Complementary Network for RGBD Segmentation [1]

[1] Hu, Xinxin, et al. "Acnet: Attention based network to exploit complementary features for rgbd semantic segmentation." 2019 IEEE international conference on image processing (ICIP). IEEE, 2019.

• ACNet: Attention Complementary Network for RGBD Segmentation [1]

Table 1. Comparison with other state-of-the-art methods onNYUDv2 test set and SUN-RGBD test set.

Model	NYUDv2	SUN-RGBD
3DGNN [6]	39.9%	44.1%
RefineNet (ResNet152) [17]	46.5%	45.9%
Depth-aware CNN [7]	43.9%	42.0%
LSD [8]	45.9%	-
CFN (VGG-16) [18]	41.7%	42.5%
CFN (RefineNet-152) [18]	47.7%	48.1%
ACNet (ResNet-50)	48.3%	48.1%

[1] Hu, Xinxin, et al. "Acnet: Attention based network to exploit complementary features for rgbd semantic segmentation." 2019 IEEE international conference on image processing (ICIP). IEEE, 2019.

• CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation [1]

- CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation [1]
- Feature-wise rectification using cross-modal information
 - Channel-wise and spatial-wise rectification
- Sequence-wise interaction using cross-modal information
 - Cross-attention and mixed channel embedding

• CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation [1]

Method	Modal	NYU Depth V2	Cityscapes	MFNet	ZJU-RGB-P	EventScape	KITTI-360
SegFormer-B2 [33]	RGB-only	48.0	81.0	53.2	89.6	58.7	61.3
CMX-B2	Multimodal	54.1 (RGB-D)	81.6 (RGB-D)	58.2 (RGB-T)	92.2 (RGB-P)	61.9 (RGB-E)	64.3 (RGB-L)

• CMX: Applications in driving and walking assistance [1]

• CMNeXt: Asymmetric fusion for arbitrary-modal segmentation [1]

3. Arbitrary-modal Scene Segmentation • DeLiVER: Arbitrary-modal segmentation benchmark [1]

(b) Statistic of different data splits and views.

(a) **Structure and samples** of four adverse conditions and five failure cases. (c) **Distribution** of

• **DeLiVER:** Arbitrary-modal segmentation benchmark [1]

Model-modality	#Params(M)	GFLOPs	Cloudy	Foggy	Night	Rainy	Sunny	MB	OE	UE	LJ	EL	Mean
HRFuser-RGB	29.89	217.5	49.26	48.64	42.57	50.61	50.47	48.33	35.13	26.86	49.06	49.88	47.95
SegFormer-RGB	25.79	38.93	59.99	57.30	50.45	58.69	60.21	57.28	56.64	37.44	57.17	59.12	57.20
TokenFusion-RGB-D	26.01	54.96	50.92	52.02	43.37	50.70	52.21	49.22	46.22	36.39	49.58	49.17	49.86
CMX-RGB-D	66.57	65.68	63.70	62.77	60.74	62.37	63.14	59.50	60.14	55.84	62.65	63.26	62.66
HRFuser-RGB-D	30.46	223.0	54.80	51.48	49.51	51.55	52.12	50.92	41.51	44.00	54.10	52.52	51.88
HRFuser-RGB-D-E	31.04 (+0.57)	229.0 (+6.00)	54.04	50.83	50.88	51.13	52.61	49.32	41.75	47.89	54.65	52.33	51.83
HRFuser-RGB-D-E-L	31.61 (+0.57)	235.0 (+6.00)	56.20	52.39	49.85	52.53	54.02	49.44	46.31	46.92	53.94	52.72	52.97
CMNeXt-RGB-D	58.69	62.94	67.21	62.79	61.64	62.95	65.26	61.00	64.64	58.71	64.32	63.35	63.58
CMNeXt-RGB-D-E	58.72 (+0.03)	64.19 (+1.25)	68.28	63.28	62.64	63.01	66.06	62.58	64.44	58.73	65.37	65.80	64.44
CMNeXt-RGB-D-E-L	58.73 (+0.01)	65.42 (+1.23)	68.70	65.67	62.46	67.50	66.57	62.91	64.59	60.00	65.92	65.48	66.30
w.r.t. SegFormer-RGB			(+8.71)	(+8.37)	(+12.01)	(+8.81)	(+6.36)	(+5.63)	(+7.95)	(+22.56)	(+8.75)	(+6.36)	(+9.10)

• DeLiVER: Arbitrary-modal segmentation benchmark [1]

• Fourier Prompt Tuning for Modality-Incomplete Scene Segmentation [1]

[1] Liu, Ruiping, et al. "Fourier Prompt Tuning for Modality-Incomplete Scene Segmentation." IEEE Intelligent Vehicles Symposium (IV), 2024.

• Fourier Prompt Tuning for Modality-Incomplete Scene Segmentation [1]

[1] Liu, Ruiping, et al. "Fourier Prompt Tuning for Modality-Incomplete Scene Segmentation." IEEE Intelligent Vehicles Symposium (IV), 2024.

• Anymodal Segmentor: Learning Robust Anymodal Segmentor with Unimodal and Cross-modal Distillation [1]

[1] Zheng, Xu, et al. "Learning Robust Anymodal Segmentor with Unimodal and Cross-modal Distillation." arXiv preprint arXiv:2411.17141 (2024).

• Anymodal Segmentor: Learning Robust Anymodal Segmentor with Unimodal and Cross-modal Distillation [1]

Method	Pub.	Training	Anymodal Evaluation							Mean
			F	E	L	FE	FL	EL	FEL	
CMX (Zhang et al., 2023a)	T-ITS 2023	 FEL	2.52	2.35	3.01	41.15	41.25	2.56	42.27	19.30
CMNeXt (Zhang et al., 2023b)	CVPR 2023		3.50	2.77	2.64	6.63	10.28	3.14	46.66	10.80
MAGIC (Zheng et al., 2024b)	ECCV 2024		43.22	2.68	22.95	43.51	49.05	22.98	49.02	33.34
Any2Seg (Zheng et al., 2024a)	ECCV 2024		44.40	<u>3.17</u>	22.33	44.51	<u>49.96</u>	22.63	<u>50.00</u>	<u>33.86</u>
Ours	-		46.01	19.57	32.13	46.29	51.25	35.21	51.14	40.23
w.r.t SoTA	-	-	+1.61	+16.40	+9.80	+1.78	+1.29	+12.58	+1.14	+6.37

[1] Zheng, Xu, et al. "Learning Robust Anymodal Segmentor with Unimodal and Cross-modal Distillation." arXiv preprint arXiv:2411.17141 (2024).

• Anymodal Segmentor: Learning Robust Anymodal Segmentor with Unimodal and Cross-modal Distillation [1]

[1] Zheng, Xu, et al. "Learning Robust Anymodal Segmentor with Unimodal and Cross-modal Distillation." arXiv preprint arXiv:2411.17141 (2024).

Summary

- Towards holistic scene understanding by overcoming the limit in field of view, annotations, and cross-modal fusion
- All works are with open codes!
- Future perspectives
 - Leverage SAM's capabilities to address cross-modal inconsistencies
 - Roadside and V2X collaborative perception using complementary representations
 - World models for predicting future semantic occupancy estimation

Thanks!

kailun.yang@hnu.edu.cn